MBI Matematika SMK Edisi Januari 2012
Oleh:
Fadjar Shadiq, M.App.Sc (fadjar_p3g@yahoo.com)
- Find the value of n given that (102010 + 25)2 – (102010 – 25)2 = 10n. [Score 3]. Tentukan nilai n jika diberikan bahwa (102010 + 25)2 – (102010 – 25)2 = 10n. [Skor 3]
- An equilateral triangle is inscribed in a circle. Points M and N are the mid-points of AB and AC respectively. Line segment MN is extended to meet the circumference at P. Find the ratio of MN : NP. [Score 4]
- Steve is planning a cross-country run for his club. He plans a course, starting at O, that follows the arrows from O to A, around the arc APB which is part of a circle which can be represented by the equation (x – 12)2 + (y – 5)2 = 25 then from B back to the starting point O. OA and OB are tangents to the circle. What is the total length of the run. (All distances are in km). [Score 5]
Sekali lagi, cobalah untuk memecahkan masalah di atas sendiri dahulu sebelum mencoba melihat ’Petunjuk’ dan ’Kunci Jawaban’. Karena hanya dengan cara seperti itulah Anda dapat berlatih memecahkan masalah dan daat meningkatkan kemampuan memecahkan masalah Anda.
Download File: Soal MBI Matematika SMK Edisi Januari 2012
Download File: Petunjuk Menyelesaikan Soal MBI Matematika SMK Edisi Januari 2012
Download File: Kunci Jawaban MBI Matematika SMK Edisi Januari 2012
Recent Comments